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The big questions

How big

Where are they

How to capture
What's the benefit
How do they compare
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Example : Food cold stores

Headline numbers:

306 'large' stores in England, Wales, N Ireland (stores in Scotland removed)
Volume: 46,842,880 m? for all 306 stores

Energy: 2.7 TWh/yr for all 306 stores

Average power: 1,017 kW/store

y Newcastle
{a Y upon Tyne
BEordonderry . Calliste )
perry Nosth sutderland
a Northeiz Durharg
[~ ol °lfasl o
° Great Britain |
Y Usbuvn
£\, Armagh
Najey nol
[ !
Lancaster
York
° , Leer‘e °
Preston

Nu
0 0“0 00

A0 2
Oublin’ ® L°- Manchestar Sheglpld
© Liverpool—
Bangor . \ Lincoln
Chester
° Soheon Nottingham
Trent Derby, e
\
¢] Leicester <
3 \ g Norwich '@
Carhgont N ¢ympy B"”‘@"""‘ o) Ptlerborougho
8ay Wales 7, \ \ Ely
Waterford (Wenlry \
=~ . Cambridge .
Worcester y
//\;r George's 's"ﬂ'd ° , 8 \
Chann#l StDavids Glouco, °
Oxford o StAIDans . Chelmsford
Swansea . o T @ 2
2 " L Lcwion
e M C
° Siough
Bristol o Q
¢ ] oo
° Wells 5"‘°Y 4
o JWinchester ® Dunkerq
® 5]
o ; Boighon s
Portsmouth = 5}’“’{9‘
Exeter DOVer/
Pas de
Colais
pryn—o
Y= Truro, “
|_S0km | I~ - )
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99.6%
99.6%
9
(%]
o
o
»
G
o
=
0.8% 0.4%
0.4% W_I_04%L00%
I I )
ST S &
$ & & QQQ QQQ QQQ QQQ Q.\& QQ °§ "JQ '\Q ‘°® ® qfs
N 7'\~ 7{],\ 79_,. 7\(,3« 7"@‘ ”QDQ. 4 B =

Volume of cold stores (all stores)

i IIIIIIIIII.H H =

% of total power for differentsized
stores

L L
QQQQQQQQQQQQQQ,§®¢$¢§@¢$®¢§
Q Q Q
D A L L > 7Q' ~

% of total power used by different store sizes (all stores)



Food cold stores: evidence and methodology

Energy benchmark(s) used

58.2 kWh/m?3/y. Mean SEC for chilled and
frozen stores (Evans et al, 2014)

Assumptions:
All stores had average SEC

Reference:

Evans et al. Specific energy consumption values for various
refrigerated food cold stores. Energy and Buildings (2014). Volume
74, May 2014, Pages 141-151
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UK numbers/volume (excl Scotland)

306 ‘large’ stores identified in Fikiin et al (2017)
241 had data on volume

Volume for stores with missing volume was pro-
ratered based on type of store
(chilled/frozen/mixed)

Energy use was based on SEC (see left)
Total energy used/year (all stores) = 2.7 TWh/year

Assumptions:
Pro-ratering the stores is valid

References:
Fikiin et al. D2.1. Report on refrigerated food facility mapping. 2017.
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Temperature (°C)

Potential waste heat output

Calculated using:
+ COSPofl5

* 60% of energy in stores used for refrigeration
(excludes offices, fans, pumps etc)

Stores with >250 kW heat output extracted
* 84% (by number) of stores >250 kW heat output

* Volume for stores with heat output >250 kW =
36,932,612 m3

* Total energy used/year (>250 kW stores) = 2.1
TWhlyear

+ 2.1 TWh of heat/year

» 25% at 60-90°C (desuperheating and oil
cooling)

* 75% at 15-30°C (condenser)

Assumptions:

COSP of 1.5 is valid (based on survey and audit data from Evans et
al, 2014 and confidential data from cold store surveys)

60% of store energy is used for refrigeration (based on survey and
audit data from Evans et al, 2014 and confidential data from cold store
surveys)

Minimum saturated condensing tempertaure of 15°C is required for hot
gas defrosting (Clark and Gillies; Stoeker)

Detailed heat levels available (see left) based on detailed ambient
data for Filton, Bristol. 8°C td for evaporative condenser based on
confidential data from cold store surveys

That all desuperheating is available, it may already be used for
underfloor heating or water heating in some stores

25% of heat from desuperheating based on confidential data from cold
store surveys based on several ammonia plants

Reference:

Clark and Gillies, Comparison of evaporative and air cooled
condensers in industrial applications, Proc. Inst. R. 2014-15. 3-1
Evans et al. Assessment of methods to reduce the energy
consumption of food cold stores. Applied Thermal Engineering 62
(2014) 697-705

Stoecker. Ind Refrig Handbook, McGraw Hill. 1998



|:| Direct heat recovery |:| Direct heat recovery or absorption cooling
|:| Direct heat recovery or Heat pumps |:| Direct heat recovery or heat to electricity

|:| Direct heat recovery, absorption cooling or heat to electricity
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HEAT FUEL PROJECT

Average of 770 kW of heat recovered
from the London Underground

= Upgraded by a 1 MW heat pump

= Can also provide cooling when operating
in Supply Mode

= Heat FUEL investigates both the heating
and cooling benefits

= EES model has been developed to
calculate system efficiency and outputs
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COOLING THE UNDERGROUND

The EES model outputs are used as inputs to the SES investigation
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Peak Platform Temperatures 2030 (°C)

COOLING THE UNDERGROUND

Significant temperature reductions could be achieved at adjacent stations
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~5.9 GWh of cooling/year would lead to an
average AT of 6.8°C at adjacent stations and
+23% energy consumption

Average ATs of 1.1, 2.6 and 4.5°C for

scenarios 2, 3 and 4 at adjacent stations




DATA CENTRES

Known number of data centres in UK as of 2018:

25 Managed Service;
450 Colocation;
11500 Enterprise.

= Decision to focus on Managed Service and

Colocation DCs based on:

Availability of data, as specifications of
Enterprise DCs are rarely disclosed to the
public;

Colocations and Managed Services would
typically yield a larger heat output,
considering the larger average white space
area per site (Figure 1).

Estimated average white space per site in EU (2018)
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Figure 2 showing the components of a typical data centre




DATA CENTRES

= Estimated heat output from 265 sites is 1939.7 MW
= This represents 44.2% of the Managed Services and
Colocation sector in 2018 (475 / estimated 4387.4 MW)

Comparison of declared and estimated IT load
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Figure 3 showing the comparison of IT load estimated for 24 data centres against the declared
IT load
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Data centre heat energy reuse opportunities

CH - Data Cenfre V

Heat Recovery

SIRACH - Data Centre Waste Heat Recovery

Tuesday 16th November 2021 10:00 to 12:30

Online survey aiming to:

« Overcome the lack of transparency within the
Sector Introduction Server room & IT equipment

s the annual averag

 Help establish generic factors between facilities phatar thebndisto afigprtn e

in @ ground-breaking project delivening immen: nefits to
me of th i ks instantly, allow

an racks ar= urrenty atthe premises?

* Invite data centre owners and operators to
participate in the project (case study data)

s are dedicated bo high-perfs
Thank you for taking the time 1o be i inthis waricHeading project!

The fine print:

* Investigate the industry’s attitude towards ot :
waste heat recovery et il e

ergy Reuse Opportunities.

s supported by




Data centre heat energy reuse opportunities

Business as usual:
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Modelling strateay

Data centre =

Online survey

Site visit

Chiller type

IT cooling demand

PHE size required to match cooling

Overall cooling capacity demand

PUE over time

Pictures if allowed

Survey of potential location of
heat recovery equipment

Control strategy
Condensing temperature
Energy bills
Superheat
Chiller details

Evaporating temperature

Additional data requested

remotely

Subcooling

g:tr;ewable electricity generation e Type, capacity

Heat demand = Residential energy demand profile Heat pump size & number required
to match heat demand

Additional data =

Weather data (annual

temperatures)

Grid data

Electricity price

Emissions due to electricity
generation

Gas price




Publications

* Lagoeiro, H., Revesz, A,; Davies, G,; Maidment, G., Curry, D., Faulks, G. & Murawa, M. 2020. Assessing the Performance of District Heating Networks Utilising
Waste Heat: A Review. Proceedings of the ASHRAE Winter Conference, Orlando, USA, 1-5 February.

* Lagoeiro, H., Revesz, A., Davies, G., Gysin, K., Curry, D., Faulks, G., Murphy, D., Vivian, J. & Maidment, G. 2021. Waste Heat Recovery from Underground Railways
— Evaluating the Cooling Potential. Proceedings of the CIBSE Technical Symposium, UK, 13 — 14 July.

* Lagoeiro, H., Revesz, A., Davies, G., Curry, D., Faulks, G., Murphy, D., Vivian, J. & Maidment, G. 2022. Integrating Waste Heat Recovery from Railway Tunnels into
Flexible Heat Networks. Proceedings of the ASHRAE Winter Conference, Las Vegas, USA, 31 Jan — 2 Feb.

*  Wegner, M., Turnell, H., Davies, G., Revesz, A. and Maidment, G. (2021) Combined benefits of cooling with heat recovery for electrical cable tunnels in cities,
Sustainable Cities and Society, 73, pp. 103100. DOI: 10.1016/j.s¢s.2021.103100.

* Research group paper (Energies): The opportunity for meeting net zero heating using low grade waste heat sources. — contribution on data centres (work
ongoing)

. Wegner, M., Turnell, H., Davies, G., Revesz, A. and Maidment, G. (2021). Investigation of opportunities for utilising waste heat for district heating networks in
cities. CIBSE Technical Symposium 2021. Virtual online conference 13 - 14 Jul 2021

* Marques, C., Tozer, R., Revesz, A., Dunham, C., Jones, P., Matabuena, R., Bond, C., Roscoe Papini Lagoeiro, H., Wegner, M., Davies, G. and Maidment, G.
(2020). GreenSCIES — Green Smart Community Integrated Energy Systems — Integration with Data Centres. Institute of Refrigeration TechTalk Webinar. London

* Revesz, A., Williams, H., Findlay, J., Dunham, C., Jones, P., Moggeridge, M., Riddle, A. and Maidment, G. (2022) Optimisation of Smart Local Energy Systems with
Aquifer Thermal Energy Storage in Cities, 2022 ASHRAE Winter Conference, Las Vegas, US

* Revesz, A., Chadha, S., Roszynski, K., Fell, A., Jones, P., Hampton, C., Fenner, R. and Maidment, G. (2021) Engineering Value and Innovative Design Options for
Smart Local Energy System, 2021 CIBSE Technical Symposium, UK

* Revesz, A, Jones, P.,, Dunham, C., Riddle, A., Gatensby, N. and Maidment, G. (2021) Decentralised heat pumps and thermal stores for 5th generation district
heating and cooling networks, 2021 CIBSE Technical Symposium, UK

* Revesz, A, Jones, P.,, Dunham, C., Davies, G., Marques, C., Matabuena, R., Scott, J. and Maidment, G. (2020) Developing novel 5th generation district energy
networks, Energy, 201, pp. 117389. DOI:10.1016/j.energy.2020.117389.

* Bowman, A, Revesz, A., Davies, G. and Maidment, G. (2020) Project SHOES: Secondary Heat Opportunities from Electrical Substations, 2020 ASREAE Winter
Conference, Orlando, USA, Vol. 126, pp. 29-38.



